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ON NON-ISENTROPIC STATIONARY SPATIAL AND PLANAR NON-STATIONARY DOUBLE-WAVES* 

S.V. MELESHRO 

A coPlplete classification of planar non-stationary non-isentropic and spatial stationary 
gas flows of the Boubte-wave type is given when there is a functional arbitrariness. Pressure 
and entropy are chosen as the independent variables in the hodograph space. It is shown that 
non-isentropic double-waves with a functional arbitrariness, which are not reduced to in- 
variant solutions, only occur in the stationary spatial case in the case of gases with an 
equation of state Z= n(p) A(S). The flows which are described by these double-waves generalize 
Prandtl-Meyer waves to the spatial non-isentropic case. Only two forms of planar non-station- 
ary non-isentropic gas flows of the double-wave type, which are not reduced to invariant 
solutions and have a functional arbitrariness , occur in the general solution of the Cauchy 
problem. 

Double-waves have previously been classified within the framework of the equations of 
gas dynamics subject to additional assumptions regarding either potentiality /I/ ortheweaker 
conditions of the rectflfnearity of the contour lines of the flows being considered /2-4/. 
Papers concerned with this approach have been discussed in greater detail in /5/. AII attempt 
has been made in /6/ to investigate double-waves without any additional assumptions. Hwever, 
a complete investigation of the consistency of the resulting system of quasilinear first-order 
differential equations is rather difficult on account of the unwieldiness of the calculations. 
Particular sollitions of this system were given in /b, 7/. 

The overall investigation of travellfng waves can be divided into two parts: with a 
constant and with a functional arbitrariness in the general solution of the Cauchy problem. 
In the case of solutions with a constant arbitrariness, the initial system of gas dynamic 
equations reduces to a completely integrable system as a re8ul.t of two to three extensions. 
The conditions $llg?osed on the independent variables in the space of the hodograph (the con- 
sistency conditions) &e obtained for such systems by simple cross differentiation. The 
process by means of which these conditions are obtained is very unwieldy while the solution 
of the initial system has just a single constant arbitrariness in the general solution. The 
class of running waves have a functional arbitrariness in the general solution of the Cauchy 
problem is more important from the point of view of the solution of boundary value problems. 
Double-waves with a functional arbitrariness have been investigated in IS/ for the case of 
planar isentropic flows. 

2. Doub~&WatwS Of 8$zZt&t sfeady-seats gas flow. Stationary, non-isobaric and non- 
isentropic double-waves are considered which do not reduce to invariant solutions of the 
equations of gas dynamics 

$+rVp=O, -$--divu=O, $=O 

with an equation of state 'F = z(p, S), zp f 0, zs+O. Here u = @I, %t us) is the velocity, 
p is the pressure, 8 is the entropy and T is the specific volume. In the case of steady state 
flows didt = u&3;e, (here and subsequently, summation is carried out over a repeated Greek 
subscript). 

If p and S are functionally independent, then, by selecting the functions p and X as the 
independent parameters of the double-wave in the space of the hodograph (it is assumed that 
PA --A&z, f;O) without any loss in generality, it can be shown that the following assertions 
are valid. Either the double-waves (according to the reduction theorem /9/) are reduced to 
invariant solutions or, by carrying out the transformation zI = P(p. h, x1), x3 = Q(p, li, x3) (as 
in /6/f, we obtain a completely integrable system of first-order differential equations which 
has just a single constant arbitrariness in the solution. Hence, the pressure and the entropy 
are functionally independent in stationary non-isobaric non-isentropic double-waves which 
are not reduced to invariant solutions and have a functional arbitrariness. 

Pressure and entropy were selected as the double-wave parameters. After introducing 
the new independent variable cp= (divz& from (1.1), we get 
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Since the flow is non-isobaric ~fO,~o~u~~#O (to be specific, it is aesumea that uU,#= 
0). It follows from (1.2) that 

7 -t-+W+=O (1.3) 

By the total differentiation of D, with respect to the variable zi ana comparing the 

conibinations, we get from Eq.11.2) thhat 

Dx,@j- Dx,% = uJ#i$ - uip%J + Cp @j&q - uipBs=l~ - 
9’ t” jpp%p - &ppU jp) x O (1.4) 

D(HT- n~S,Wt =Hdmldt-(P(WW fuorpu~~,s,-i- 
rpl (HP -I_ dfp) = 0 (1.5) 

D (‘QLVb = uipdcpldt + Z’PX* -t q36Sq - 

‘pa (UipH - TUipp) = 0 (& j = 1,2,3; i + j) (1.6) 
S=%-k~a+zs, LW=@&xe 

Upon eliminating the derivatives cp,i, m*, from (1.4) with the aid of equations (1.61, 
we have 

(oh, - WPS) s,, - Ku, - zujps)Sri = 0 (i, j = 1,2, 3; i # j] (i.7) 

It is subsequently necessary to distinguish between the two cases RfO and H =O. 
lo. Let HfO. If p is expressed by rearranging the third equation of (1.2) ana its 

value is substituted into the remaining equations of this system then, instead of (1.71, a 
homogeneous system of quasilinear equations is obtained and the equations 

Wps-~su~p = 0 (i = I,2,3) (W 

follow from the fact that the reduction of the double-waves to invariant solutions is for- 
bidden /9/. The existence of functions Fi = F,(p) such that 

% = Ftulp (i = 2,3) (1.Q) 
follows from Eqs.(l.B) . 

Since Hf 0, the existence of a determinant uluts - t&J&S follows from the second ana 
third equations of system (1.21. To be specific, it is assumed that A E U@* - uy* += 0. 

The system of equations which the functions v = (p, S,cp)l must satisfy is written in 
the form of an overdetermined system of quasilinear differential equations 

vx,+ G,v=, =fn vs,+ Gv, = I, (1.10) 

Px, + ‘p%p = 0, &,cpll + cpx, = fa 

with functions f,,f, and fa which are independent of the derivatives vy(i=i,2,3). 
For the existence of a solution of system (1.10) which has a functional .arbitrariness, 

it is necessary #at 

E$(&D - ulPAi) = 0 (i = 2, 3) (Lli) 

Since vHrpf0, the equation 
gh = 0 (iS2) 

follows from Eqs.(l.9), and (1.11). 
When X = 0, either a reduction to the two-dimensional case (possibly, by means of a 

rotation of the coordinate system) is obtained from (1.9) and the equation =Hm or 
the condition Hcp+ 0 is violated, 

kc& 

The case when E.= 0, when some of the equations of system (1.10) have the form 



qi czs tHq,, f (pH&, - ‘p=c, = 0 

ci z 2uipHa f zHpuip - THUDS,, (i = 1, 2, 3) 

is investigated in a more complex manner. 
The three first-order equations 

SxiUj - S,,Uj + TCp (Utpdj - diUjp) Tc O (iY .i = I? 2? 3i i f i) 

a, z Hu,, [za (H,/H)s - 2za (U&L&Y - 2 +(H/W 
di = F,d, -+- F,’ (ulp (2H4 + TH,) - 22Hu,,,) - zRu,,Fi”, ai =JFia, (i = 2, 3) 

(1.13) 

are obtained fromtheequations Ox@, - D,@, = 0 (i # i). 
It follows from the factthat the reduction of double-waves to invariant solutions is 

forbidden that it is necessary that ai = Ara, (i = 2, 3). 
But, then. 

~A(~ipdj- sjpdi)+ (- l)k Harut = 0 (1.14) 

(i,j,k=1,2,3;i<j,k#i,k~j) 

follows from the second and third equations of system (1.2) and Eqs.(l.l3). 
After eliminating di (i=1,2,3) from the latter equations and Eq.(l.3),-we obtain that 

rHa, = 0. Since TH#O, it follows from the last equation and Eq.(1.14) that a, = 0, dl = 
F&, (i = 2, 3). 

It is subsequently necessary to consider two cases: (Fz')"+ (Ii,')2#0 and F2 = F, = 0. 
In both cases either the condition H#O or the condition for the functional independence 
of the pressure and entropy is not satisfied, except in the case of the gases with an equation 
of state (1.23). 

Hence, if H# 0, there are no stationary non-isentropic non-isobaric solutions of the 
double-wave type which have a functional arbitrariness and are not reduced to invariant sol- 
utions, 

2O. Let H=O. Since p and S are functionally independent, it follows from the fact 
that the redrlction of the system of Eqs,(l.Z), (1.5), (1.7) to invariant solutions is for- 
bidden that Eqs.(l.B) and (1.12) are also satisfied in the case when H = 0. 

For the subsequent investigation a transformation is made to the new independent variables 
P,S and xs /6/ (without any loss in generality, it is assumed that the inequality Px,Sx, - 

Ps,S*, z 0) is satisfied, that is, 51 = p (P, s, 5*), 52 = 0 (P? s* 4. 
After this transformation, Eqs,(l.l) are written as: 

BP,--LlQ, =o, s,,BPs-(T+ +4) Qs =o (1.15) 

(T +u,,B)Ps- @Qs= 0 

(u,,B - zQr,)Ps - (u,,A --Px,)Qs = 0 

(ues - uQx,) P,-- (~1s - wPx,)Qp =o 
A s u1 - @r,, B = us - usQz. 

and, moreover, 

P,Qs--sQpfO (1.16) 

By virtue of the inequality (1.161, the solutionof the system ofEqs.(l.15) reduces to 
the integration of a system of two linear equations for a single unknown functions Q(p, S, x3) 

oQ,> - 8 (~2 - GQ~,) = 0 (1.17) 

WTQ, - B(uzs - wQr.) = 0 

Here, 

P = - FzQ - xQF3 + x 
o sz u1 + u2F% + usF,, $ G x’ - F,‘Q - xaF,’ 

(1.18) 

where x = X(P) is an arbitrary function. From Eq.(1.18), it follows that 

11 + @, + z,F, = x (1.19) 

while it follows from the commutation condition (1.16), after (1.18) has been substituted 
into it, that ~Qs# 0. Apart from this, since z :r - u,+,, = - oull,, then 0 # 0. Then, 
after eliminating Q, from (1.171, one obtains 

(uJo)sQ,, - (d~)s = 0 (1.20) 



201 

If (u2/m)s + 0, then, by a rotation of the coordinate system, the solution is reduced 
to an invariant solution (here, the intermediate calculations are quite unwieldy and have 
been omitted). In this connection, it is necessary to assume that 

(Ui/O)s = 0 (i = 2, 3) (1.21) 

Since double-waves are being considered which are not reduced to planar flows /9/, the 
relationships 

ni =r hi @w;'(S) (i = 1% 2, 3) (1.22) 

and 
'G = -(h&$)*2, H = -(h&d)@ = 0 

follow from Eqs.(l,9), (1.121 and (1.21). 
Hence, Eqs,(l.22) are only valid in the case of equations of state of th@ form 

r = g (P)V (S) (1.23) 

Therefore, if Hi= 0, it is necessary tbatEqs.(1.22) and (1.23) and the relationships 

should be satisfied for the existence of stationary non-isentropic non-isobaric gas flows of 
the double-wave type which have a functional arbitrariness and are not reduced to invariant 
solutions. 

A function Q with an arbitrariness in one function of the two arguments (the argument 
here is the entropy S) is found from Eqa.(1.25). Since the velocity of sound $ = - gyPlg’ 
in the case of a gas with an equation of state (1.231, then, by virtue of Fqs.(1.24) and the 
Cauchy inequality, cf ]u ]. Consequently, the flows which are described by these solutions 
are 'always supersonic. 

Tne resulting double-waves may be considered as a generalization of simple waves to non- 
isentropic flows , and, hence, it is possible with their help to construct flows around 
profiles which are nmre complex than developing profiles /6, lo/. Solutions of the form of 
(1.22) have been obtained in /7/ in the case of the equation of state of a polytropic gas 
(g = p-l/V) In the planar stationary case (h, = 0) these solutions describe generalized 
Prandtl-Neyer motions /ll/. 

2. Ptanar transient double-umes. ,Planar non-steady-state isentropic flows of a 
polytropic gas with a functional arbitrariness have been investigated in 181. The following 
theorem holds in the case of non-isentropic double-waves with an arbitrary equation of state 
/X2/. 

Theorem 1. Planar non-isentropic non-isobaric gas flows of the double-wave type which 
are not reduced to invariant solutions and have a functional arbitrariness can only be of the 
following forms: 

1) double-waves with a single functional arbitrariness in a single argurmnt with an 
equation of state t = A,(S)g(p) + A*(S) aa, at the same time, ui = ui (S) (i = 1, 2) are 
arbitrary functions, the pressure is determined from the equation g(p) = c,t + ca (where ci 

are constants and cl+ 0) while the entropy satisfies the system of differential equations 

~~~d~ = 0, ua' S,, = clA,/((c,t + cz) A, + A*) 

which is found in the involution; 
2) double-waves with a two-function arbitrariness in a single argumentinwhich the 

functions t = r (p, S), ui = ui(p, S) (i = 1,2) satisfy the equations (the summation is carried 
out from 1 to 2) 

t(s2f&ps- Wueps) i ua,kJ(%,%s - %)s%S) =o (2-i) 
rpf~apUap=~ 

dldt = a/at + u&ax,, 5 = KS.+ %p&&I f = "s + 2u,y,s 

If EZqs.(Z.l) are satisfied then, after transforming to the independent variables p, S 

and 1 (zi=Pi(p, S, 1) (i = 1,2)), a solution is obtained with the straight contour lines 



The function cD.==@(p,S) .is found from the second-order equation which is obtained after 
substituting x into the equation 

WJ + W/(~,SW)-~;X =i 0 

The system of Eqs.(2.1) for the functions ~(p, S) and uj(p, S)(i = 1,2) is found in 
the involution and has an arbitrariness in five functions of a single argument. If, however, 
the question is posed as to with which specified equations of state z -= s(p, s) this system 
in ui(p, S)(i- 1,2) is compatible and what will be the solution in this case, then a 
complete investigation is rather difficult. However, in the special case of the equation of 
state (1.231, the above question can be completely answered. On account of the large number 
of intermediate calculations we shall only present the route for obtaining the answer to this 
question. 

Initially, it is proved that, if the equation of state has the form of (1.231, then it 
follows from (2.1) that uZp = F(p)I+ After, this, relationships of the form of (1.22) 
at= &(p)*(S) (i LI= 1,2) follow from the fact that reduction is forbidden, the latter equation 
and Eqs.(2.1) and the functions h,(p)(i = 1,2) satisfy the system of ordinary differential 
equations 

g-+&h,'==@ g'+ h,'h,.&' = 0 

However, when the latter equations are satisfied, the solution is reduced to thestationary 
case. Hence, in the case of equations of state (1.23), solutions are obtained which are 
reduced to planar solutions and generalized Prandtl-Meyer waves, These solutions have been 
studied in detail in /ll/. 
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