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ON NON-ISENTROPIC STATIONARY SPATIAL AND PLANAR NON-STATIONARY DOUBLE-WAVES™

S.V. MELESHKO

A complete classification of planar non-stationary non-isentropic and spatial stationary
gas flows of the double-wave type is given when there is a functional arbitrariness. Pressure
and entropy are chosen as the independent variables in the hodograph space. It is shown that
non~isentropic double-waves with a functional arbitrariness, which are not reduced to in-
variant solutions, only occur in the stationary spatial case in the case of gases with an
equation of state «t=g(p)4(S). The flows which are described by these double~-waves generalize
Prandtl-Meyer waves to the spatial non~isentropic case. Only two forms of planar non-station-
ary non-isentropic gas flows of the double-wave type, which are not reduced to invariant
solutions and have a functional arbitrariness, occur in the general solution of the Cauchy
problem.

Double-waves have previously been classified within the framework of the equations of
gas dynamics subject to additional assumptions regarding either potentiality /1/ or the weaker
conditions of the rectilinearity of the contour lines of the flows being congidered /2-4/.
Papers concerned with this approach have been discussed in greater detail in /5/. An attempt
has been made in /6/ to investigate double-waves without any additional assumptions. However,
a complete investigation of the consistency of the resulting system of quasilinear first-order
differential equations is rather difficult on account of the unwieldiness of the calculations.
Particular solutions of this system were given in /6, 7/.

The overall investigation of travelling waves can be divided into two parts: with a
constant and with a functional arbitrariness in the general solution of the Cauchy problem.

In the case of solutions with a constant arbitrariness, the initial system of gas dynanmic
equations reduces to a completely integrable system as a result of two to three extensions.
The conditions imposed on the independent variables in the space of the hodegraph {(the con-
sistency conditions) are obtained for such systems by simple cross differentiation. The
process by means of which these conditions are obtained is very unwieldy while the solution
of the initial system has just a single constant arbitrariness in the general solution. The
class of running waves have a functional arbitrariness in the general solution of the Cauchy
problem is more important from the point of view of the solution of boundary value problems.
Double-waves with a functional arbitrariness have been investigated in /8/ for the case of
planar isentropic flows,

1. Doublé-waves of spatial steady-state gas flows. iStationary, non-iscbaric and non-
isentropic double-waves are considered which do not reduce to invariant solutions of the
equations of gas dynamics

-%;l—-f—TVp:O, —:—:—:———rdivuzo, %%*;0 (1.1
with an equation of state 1 =71{p, S), 1,50, 15 0. Here u = {u, u, ¥;) is the velocity,
p is the pressure, S is the entropy and 1 is the specific volume. In the case of steady state
flows didi = ued/drs, (here and subsequently, summation is carried out over a repeated Greek
subscript) .

If p and § are functionally independent, then, by selecting the functions p and A as the
independent parameters of the double-wave in the space of the hodograph (it is assumed that
Pz — Puhy, 70)  without any loss in generality, it can be shown that the following assertions
are valid. Either the double-waves (according to the reduction theorem /9/) are reduced to
invariant solutions or, by carrying out the transformation & = P {(p, A, &y), 23 = Q (p, A, z5) (as
in /6/), we obtain a completely integrable system of first-order differential equations which
has just a single constant arbitrariness in the solution, Hence, the pressure and the entropy
are functionally independent in stationary non~iscbaric non~isentropic double~waves which
are not reduced to invariant sclutions and have a functional arbitrariness.

Pressure and entropy were selected as the double-wave parameters. After introducing
the new independent variable ¢ = (divu)/t, from (l.1l), we get
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d, as
_df_ — 1 = 0, - = 0, uugSs, = Hey {1.2)

(H =7t + Uogllap)y Di=py+u,9=0 (=123

Since the flow is non-iscbaric @=£0, ueglap 70 (to be specific, it is assumed that uy, %
0). It follows from (1.2) that

T+ Mallap = 0 1.3)
By the total differentiation of D,‘)i with respect to the variable z; and comparing the
combinations, we get from Eq.(1.2} that

D,i‘])j _— Dxl(D,- = u,p(p;‘ — u;,(p,! + i (u,',,gS,{ R u;psS,l) —

O (Ujpplhip — Uipplhsp) = 0 (1.4)
D (HQ — 11asS,,)/Dt = H d0/dt — @ (ttiags -+ Uaptippigs) Sx -+
Q(H2TH) =0 (1.5)
D (q)i)/ Dt = u’ipd(P}' dt + TPy, + ‘PCSx‘ -
QP (Uil — U =0 (1,j=1,2,3; i) (1.8)

§=13+ Unplias, DDt = ually,

Upon eliminating the derivatives ¢, ¢, from (1.4) with the aid of equations (1.6),
we have

(Cu‘}i - ‘l’u;ps) S"j - (QuJ';P - 'Wips) Sxi =0 (iy o= 17 2s 3; i j) (1-7)
It is subsequently necessary to distinguish between the two cases H=#0 and H =0.
1°, et H=s#0. If ¢ is expressed by rearranging the third equation of (1.2) and its
value is substituted into the remaining equations of this system then, instead of (1.7), a
homogeneous system of quasilinear equations is cbtained and the equations
'(uips w— guip =0 (i = 1, 2, 3} (1,8)
follow from the fact that the reduction of the double-waves to invariant solutions is for-
bidden /9/. The existence of functions F, = F, (p) such that
uip =3 Fium (t = 2, 3) (1.9)

follows from Egs.(1,8).
Since H % 0, the existence of a determinant uuys — use follows from the second and
third equations of system (1,2}, To be specific, it is assumed that A= ugligg — Ugitgs 7= 0.
The system of equations which the functions v = (p, S, 9)) must satisfy is written in
the form of an overdetermined system of quasilinear differential equations

Va, + GaVa, =1y, Vi, +Gyve, =1, (1.10)
Pz, Quyp == 0, S0l + Pz, = [y

0 0 0
Gi= 0 "'"Ai 0

0 (pli 0

(i=2,3)

Ag = (Ugitys — Usligs)fB,  Ag = (utag — ugtss)/A
L = uEMEHA) + LAt (i = 2, 3)
1, = u EM(HA) + L
A= A{uyp - ugpdy + usply), § = T5 -t Aopltas

with functions f,f, and f; which are independent of the derivatives v, (i=1,2,3).
For the existence of a solution of system (1.10) which has a functional arbitrariness,
it is necessary that

EL (yp — UupBy) =0 (i=2,3) (1.49)

Since <tHg=0, the egquation
Ei =0 (112)
follows from Egs.(l.9), and (1.11).

When A =0, elther a reduction to the two~dimensicnal case (possibly, by means of a
rotation of the cooxrdinate system) is cbtained from (1.9) and the equation uysS,, = He or
the condition He=# 0 is violated,

The case when ! =0, when some of the sguations of system {1.10) have the form
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Yy = 1Hes, + @HLS:, — ¢%c; =0
;= 2up HE + THuip — tHuyy, (6=1,2,3)

is investigated in a more complex manner.
The three first-order equations

Sas— Sx,-a;‘ + T (ipd; — dittsp) =0 (i, j =1, 2,3; is]) (1.13)
ay = Huyp, [v3 (Hp/H)g — 272 (Ugpp/tt1p)s — 2 THH/[T)s]
d; = Fidy + F{! (uy, (2H? 4 1H,) — 2tHu,pp) — tHuF, 0 ='Fia, (i =2,3)

are obtained fromthe equations Dyy; — Dy =0 (i ).

It follows from the fact that the reduction of double-waves to invariant solutions is
forbidden that it is necessary that a; = A, (i = 2, 3).

But, then,

TA (ipd; — up) + (— 1) Hayuy = 0 (1.44)
G, i k=1,2 3 i<j ki k=)

follows from the second and third equations of system (1,2) and Egs.(1.13).

After eliminating d;(i=1,2,3) from the latter equations and Eq.(1.3), we cbtain that
tHa; = 0. sSince +H # 0, it follows from the last equation and Eq.(l.14) that 4, =0, d;, =
Fudy (i =2, 3).

It is subsequently necessary to consider two cases: (F,)? + (F;')®*# 0 and F, =F; =0.
In both cases either the condition H % 0 or the condition for the functional independence
of the pressure and entropy is not satisfied, except in the case of the gases with an equation
of state (1.23).

Hence, if H + 0, there are no stationary non-isentropic non-iscbaric solutions of the
double-wave type which have a functional arbitrariness and are not reduced to invariant sol-
utions,

2°, Let H =0, Since p and S are functionally independent, it follows from the fact
that the reduction of the system of Egs,(l.2), (1.5), (l.,7) to invariant solutions is for-
bidden that Eqs.(l1.8) and (1.12) are also satisfied in the case when H =0,

For the subsequent investigation a transformation is made to the new independent variables
p, § and x; /6/ (without any loss in generality, it is assumed that the ineguality DSz —
Py, 7= 0) is satisfied, that is, z, =P (p, S, i), . =Q(p, S, z3).

After this transformation, Egs.(l.l) are written as:

BP,— AQ, =0, u,BPs— (14 u;,A)Qs =0 (1.15)
(T + ugpB) Ps — uypAQs = 0
(tspB — 1Qz,) Ps — (ugpA — TPy ) Us = 0
(uos — 1435Qx,) Pp — (118 — uzsPuy,) Qp =90
A=u, —usPy, B=uy—ugQx,

and, moreover,
PpQS—PSQp#:O (116)
By virtue of the inequality (1.16), the solutionof the system of Eqs.(l.l5) reduces to
the integration of a system of two linear equations for a single unknown functions @ (p, S, zj)

oQp — B (up — u3Qy,) =0 (1.17)
05Qp — P (s — UssQx) =0
Here,
P =—FQ — xF3+ % (1.18)
O = Uy + UpFy + usFy B=o — FQ — x5y

where 7% = % (D) is an arbitrary function. From Eq.(1.18), it follows that

T+ 2 Fy + 2 Fy = (1.19)
while it follows from the commutation condition (1.16), after (1.18) has been substituted
into it, that PQs 0. Apart from this, since 7T = — Ugliq, = — 04y, then % 0. Then,

after eliminating @, from (1.17), one obtains

(ug/0)sQ, — (y/w)s = 0 (1.20)
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If (uj/w)s5 0, then, by a rotation of the coordinate system, the soclution is reduced
to an invariant solution (here, the intermediate calculations are quite unwieldy and have
been omitted). 1In this connection, it is necessary to assume that

(ufw)g =0 (i=2,3) (1.21)

Since double-waves are being considered which are not reduced to planar flows /9/, the
relationships

u; =k (PW(S) (1=1,2,9 (1.22)
and
T = — (haha) V% H = — (haha)P* =0

follow from Egs. (1.9}, (1.12) and (1.,21).
Hence, Egs,(1,22) are only valid in the case of equations of state of the form

T =g (p)P* (S) (1.23)
Therefore, if H =0, it is necessary that Egs.(l,22) and (1.23) and the relationships

hohs! =0, hohy = —g {1.24)
— 80 + by () — Q (hy'/hy) — x5 (hy' /Ry Y Y(hsQr, — hg) = O {1,25)

should be satisfied for the existence of stationary non-isentropic non-iscbaric gas flows of
the double-wave type which have a functional arbitrariness and are not reduced to invariant
solutions.

A function ¢ with an arbitrariness in one function of the two arguments (the argument
here is the entropy S) is found from Egs.(1,25). Since the velocity of sound ¢* = — gip%/g
in the case of a gas with an equation of state (1.,23), then, by virtue of Eqs,(1.24) and the
Cauchy inequality, c¢<C|u|. Consequently, the flows which are described by these solutions
are always supersonic,

The resulting double-waves may be considered as a generalization of simple waves to non-
isentropic flows, and, hence, it is possible with their help to construct flows around
profiles which are more complex than developing profiles /6, 10/, Solutions of the form of
(1.22) have been cbtained in /7/ in the case of the equation of state of a polytropic gas
(g = pv) In the planar stationary case (hy; =0) these solutions describe generalized
Prandtl-Meyer motions /11/.

2. Planar transient double-waves. planar non-steady-state isentropic flows of a
polytropic gas with a functional arbitrariness have been investigated in /8/. The following
theorem holds in the case of non-isentropic double-waves with an arbitrary equation of state
/12/.

Theorem 1. Planar non-isentropic non-iscbaric gas flows of the double-wave type which
are not reduced to invariant solutions and have a functional arbitrariness can only be of the
following forms:

1) double-waves with a single functional arbitrariness in a single argument with an
equation of state 71 == A4,(5) g (p) + 4, (S5) and, at the same time, u; = u;(S) (i=1,2) are
arbitrary functions, the pressure is determined from the equation gi{p) = ¢t + ¢; (where ¢
are constants and ¢, = 0) while the entropy satisfies the system of differential egquations

dS/dt = 0, uy’ Say = cidyf((est + &) 4y + A45)

which is found in the involution;

2) double-waves with a two-function arbitrariness in a single argument inwhich the
functions T =t (p, S), u; = u; (p, S) (i = 1,2) satisfy the equations (the summation is carried
out from 1 to 2)

Thaglaps + (tg — L)L = 0
T (Baslhips — Uy sUsps) -+ Usptlas (Uipites — Uggths) = 0 2.1)
Tp - Ugplap = 0
didt = 3]0t + uefj0xa, { =T+ Hapllas: &= Tg-+ QUgplas

I1f Egs.{(2.1) are satisfied then, after transforming to the independent variables p, §
and t (x;=P;(p, §, 1) (i =1,2)), a solution is obtained with the straight contour lines

uapuocSPi = t<u1'3 (1’,’ -+ Ll,all'ap) + (— 1)‘”]'11 (ulsuE - u!Sul)) +
sk + (—~’up® (=12 isef)
%= A" (T‘I’p — O (o pllast — A%/ (UasUap))
B = uy5lpp — Uaslyp
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The function @ =@ (p, S) -is found from the second-order equation which is cbtained after
substituting x into the equation
s + DEA/(Uasitas) — Ly = U

The system of Egs.{2.1) for the functions 1 (p, S) and u;(p, S)(i=1,2) is found in
the involution and has an arbitrariness in five functions of a single argument. If, however,
the question is posed as to with which specified equations of state 7= 1{(p, §) this system
in u; {p, 8) (i = 1,2) 1is compatible and what will be the sclution in this case, then a
complete investigation is rather difficult. However, in the special case of the equation of
state (1.23), the above gquestion can be completely answered. On account of the large number
of intermediate calculations we shall only present the route for obtaining the answer to this
question.

Initially, it is proved that, if the equation of state has the form of (1.23), then it
follows from (2.1) that u,, = F(p)u,,. After, this, rxelationships of the form of (1.22)
u; = hi(p)Y (S) (i =1,2) follow from the fact that reduction is forbidden, the latter equation
and Egs. (2.1} and the functions &, (p) (i = 1, 2) satisfy the system of ordinary differential
equations

&+ hoha” =0, g+ ha'ky' =0

However, when the latter equations are satisfied, the solution is reduced to the stationary
case. Hence, in the case of equations of state (1,23), solutions are cbtained which are
reduced to planar solutions and generalized Prandtl-Meyer waves, These solutions have been
studied in detail in /11/.
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